Glossario sulle curve matematiche

Da testwiki.
Versione del 24 mar 2024 alle 22:43 di imported>No2 (Corretto il collegamento Reali con Numero reale (DisamAssist))
(diff) ← Versione meno recente | Versione attuale (diff) | Versione più recente → (diff)
Vai alla navigazione Vai alla ricerca

Questo glossario sulle curve matematiche riporta termini e concetti che riguardano i luoghi geometrici unidimensionali di punti nel piano o nello spazio tridimensionale. Non vengono prese in considerazione curve immerse in spazi più astratti come iperspazi euclidei a 4 o più dimensioni, spazi in campo complesso, ecc.
I lemmi sono in ordine alfabetico, senza considerare l'espressione “curva”, “curva di”, “curva a”, ecc.; per esempio “Curva di Koch” va cercata sotto “Koch (curva di)”.

Template:Indice

A

Algebrica (curva)

Curva che può essere descritta analiticamente tramite un polinomio; è detta anche curva polinomiale

Aperta (curva)

Curva che ha gli estremi non coincidenti. Inverso di curva chiusa Template:Vedi anche

Arco

Parte di una curva differenziabile compresa fra due suoi punti, detti estremi dell'arco Template:Vedi anche

Arcocosecantoide

Arcocosecantoide

Curva che rappresenta la funzione trigonometrica inversa arcocosecante Template:Vedi anche

Arcocosinusoide

Arcocosinusoide

Curva che rappresenta la funzione trigonometrica inversa arcocoseno Template:Vedi anche

Raffronto fra Arcocotangentoide e Arcotangentoide

Arcocotangentoide

Curva che rappresenta la funzione trigonometrica inversa arcocotangente Template:Vedi anche

Arcosecantoide

Arcosecantoide

Curva che rappresenta la funzione trigonometrica inversa arcosecante Template:Vedi anche

Arcosinusoide

Arcosinusoide

Curva che rappresenta la funzione trigonometrica inversa arcoseno Template:Vedi anche

Arcotangentoide

Curva che rappresenta la funzione trigonometrica inversa arcotangente Template:Vedi anche

Armonografo

Apparecchiatura meccanica munita di pendoli utilizzata per tracciare curve anche complesse, come per esempio le figure di Lissajous Template:Vedi anche

Asintoto

Retta, o, più in generale, curva (detta curva asintotica) che si avvicina indefinitamente ad una curva data senza mai toccarla. Si può anche dire che un asintoto ad una curva data è una sua tangente all'infinito Template:Vedi anche

Astroide

Astroide

Ipocicloide a quattro cuspidi. La figura richiama l'immagine di una stella che brilla da cui il nome. L'astroide viene anche chiamato tetracuspide, cubocicloide o paraciclo Template:Vedi anche

B

Bézier (curva di)

Curva polinomiale che ha la caratteristica di essere "ben smussata" e quindi adatta per modellare oggetti reali tramite computer grafica. Si basa sui polinomi di Bernstein e su alcuni "punti di controllo" che definiscono l'area entro cui la curva deve rimanere contenuta. Le curve di Bézier vengono classificate in base al loro grado, definito dal numero di punti di controllo che le governano Template:Vedi anche

Bifoglio

Bifoglio

Curva piana, razionale di 4° grado a forma di una doppia foglia o di "orecchie di coniglio". La sua equazione cartesiana implicita, che dipende da due parametri a e b, è (x2+y2)2=(ax+by)x2

Bipolare (curva)

Luogo bipolare

Curva a forma di bocca

Bocca (curva a forma di)

Curva piana, razionale di 6° grado con le sembianze di una bocca umana. Le sue equazioni parametriche sono x=acos(t);y=asin3(t), mente l'equazione cartesiana è a4y2=(a2x2)3 dove 2a rappresenta la larghezza della “bocca”

Bowditch (curve di)

Figura di Lissajous

Brachistocrona

Curva che una massa puntiforme, soggetta solo al proprio peso, deve seguire per andare il più velocemente possibile da un punto A ad un punto B dello spazio (curva del tempo più corto). Caso particolare di cicloide che passa per i punti A e B Template:Vedi anche

B-spline

Spline realizzata congiungendo fra loro più curve di Bézier. Vedere Spline

C

Campana (curva a)

Gaussiana

Bicorno

Cappello bicorno (curva a)

Curva piana, razionale di 4° grado, con un asse di simmetria e due cuspidi che le danno la forma di un bicorno (cappello a due punte). La sua formula cartesiana è y2(a2x2)=(x2+2aya2)2, in cui il parametro a rappresenta l'altezza delle curva e la metà della sua larghezza

Caratteristica (curva)

Curva determinata dall'equazione caratteristica di una matrice ottenuta ponendo a zero il suo polinomio caratteristico Template:Vedi anche

Cardioide

Cardioide

Epicicloide con una sola cuspide. Curva che si può ottenere tracciando il percorso di un punto di una circonferenza che viene fatta rotolare, senza scivolare, intorno ad un'altra circonferenza di raggio uguale e mantenuta fissa. La cardioide è un caso particolare di limaçon Template:Vedi anche

Esempi di catenaria

Catenaria

Curva piana trascendente che rispecchia l'andamento di una fune omogenea, flessibile e non estendibile, vincolata agli estremi e libera di piegarsi sotto il proprio peso. L'aspetto è simile ad una parabola. L'equazione della catenaria è espressa matematicamente tramite la funzione coseno iperbolico Template:Vedi anche

Caustica riflessiva generata da un cerchio e da raggi paralleli

Caustica

In geometria differenziale e ottica geometrica, una caustica è l'inviluppo di raggi riflessi o rifratti da una varietà. È legata al concetto di caustica in ottica. La sorgente del raggio può essere un punto (chiamato radiante) o raggi paralleli da un punto all'infinito, nel qual caso deve essere specificato un vettore di direzione dei raggi. Template:Vedi anche

Cerchio cubico

Oroptera (curva)

Chiliagono

Poligono con 1.000 lati Template:Vedi anche

Chiralità

Una curva, o più genericamente un qualunque oggetto geometrico, è chirale se non è possibile sovrapporla, tramite un movimento, alla sua immagine riflessa. In particolare i poligoni sono chirali solo se non hanno un asse di simmetria (per es. i triangoli scaleni) Template:Vedi anche

Chiusa (curva)

Curva i cui estremi coincidono. Inverso di curva aperta Template:Vedi anche

Cicloide

Cicloide

Curva piana tracciata da un punto fisso su una circonferenza che rotola lungo una retta (come, per esempio, un punto sul bordo di una ruota di bicicletta in movimento). La cicloide appartenente alla categoria delle rullette. È caratterizzata dalla presenza di infinite cuspidi equidistanziate. Se il punto fisso si trova non sul bordo della circonferenza, ma all'interno del cerchio, la curva prende il nome di cicloide prolata o allungata o stirata; viceversa se il punto si trova sul prolungamento esterno di un raggio solidale alla circonferenza (come un punto sul bordo di una ruota di un treno che corre sulle rotaie), prende il nome di cicloide curtata o nodata o accorciata che è caratterizzata dalla presenza di infiniti lobi equidistanti fra loro Template:Vedi anche

Cicloide sferica

Curva tridimensionale tracciata da un punto fisso di un cono di rivoluzione che rotola, senza strisciare, sopra un secondo cono di rivoluzione avente lo stesso vertice; il primo cono può rotolare sia sulla faccia concava, sia sulla quella convessa dell'altro cono Template:Vedi anche

Circonferenza

Circonferenza

Curva piana luogo dai punti equidistanti da un punto fisso detto centro. La distanza dei punti della circonferenza dal centro si chiama raggio. Casi particolari di circonferenza:

Template:Vedi anche

Cissoide di Diocle

Cissoide

Qualunque curva costruita a partire da altre due curve C1 e C2 e da un punto O, detto polo. Prendere una retta che passa per il polo e interseca le due curve nei punti P1 e P2 e considerare il punto sulla retta distante dal polo quanto la lunghezza del segmento P1, P2. Facendo ruotare la retta attorno al polo, il luogo dei punti di questo tipo forma la cissoide Casi notevoli di cissoidi sono:

Clotoide

Clotoide

Detta anche spirale di Cornu, è una curva trascendente a spirale. La sua curvatura in ogni singolo punto è proporzionale alla lunghezza dell´arco (più la curva si allontana dall'origine, più ruota). Da un punto di vista cinematico, la clotoide è tale che, se percorsa a velocità costante, la curvatura varia proporzionalmente al tempo. Viene utilizzata per realizzare raccordi dolci fra rettilinei e curve circolari in ingegneria stradale e ferroviaria Template:Vedi anche

Concoidi di Nicomede

Concoide

Qualunque curva costruita partendo da un'altra curva e da un punto O (non appartenente alla curva), detto polo, e da una retta che passa per il polo e interseca la curva in un punto P. Scelta una distanza a piacere (che funge da parametro costante per tutta la costruzione), si considerino i punti sulla retta equidistanti dal punto P. Facendo ruotare la retta attorno a P, il luogo di tutti i punti di questo tipo forma la concoide che è costituita da due rami (ramo esterno e ramo interno). Se, in particolare, la curva generatrice è una retta, allora la concoide assume il nome di concoide di Nicomede

Conica

Curva algebrica piana di 2° grado. Espressione utilizzata per individuare una generica curva ottenuta intersecando la superficie di un cono circolare retto con un piano. A seconda dell'inclinazione del piano si possono ottenere una circonferenza, una ellisse, una parabola o una iperbole Template:Vedi anche

Cosecantoide

Cosecantoide

Curva che rappresenta la funzione trigonometrica cosecante Template:Vedi anche

Cosinusoide

Cosinusoide

Curva che rappresenta la funzione trigonometrica coseno Template:Vedi anche

Cotangentoide

Cotangentoide

Curva che rappresenta la funzione trigonometrica cotangente Template:Vedi anche

Cubica (curva)

Qualunque curva piana algebrica esprimibile tramite una equazione di terzo grado Template:Vedi anche

(Doppia) Croce di Malta

Croce di Malta

Curva algebrica di 8° grado che assomiglia al ramo orizzontale della croce di Malta. È espressa dall'equazione cartesiana (x2+y2)3=a2x2(x2+20y2)8a2y2(y2+2a2) (il ramo verticale della croce si ottiene scambiando x con y)

Cubocicloide

Astroide

Curve di Laporte (rosso) e Boddorf (blu)

Cuore (curve a forma di)

Curve piane a forma di cuore. Oltre alla cardioide si ricordano:

  • la curva di Raphaël Laporte che rappresenta un cuore "concavo" e molto appuntito. Ha equazione parametrica x=sin3(t);y=cos(t)cos4(t)
  • la curva di Dwight Boddorf che rappresenta un cuore "convesso" e panciuto. Ha equazione polare ρ=|tan(θ)|1/|tan(θ)|

Curva

Varietà unidimensionale immersa in uno spazio multidimensionale, ovvero una curva è la mappatura di uno spazio unidimensionale in uno spazio multidimensionale. Rientrano in questa definizione anche curve che esulano dalla immaginazione e quindi da una loro possibile rappresentazione grafica, come curve in un iperspazio euclideo a 4 o più dimensioni, curve nel piano complesso, ecc. Normalmente però, quando si pensa ad una curva la si pensa come luogo unidimensionale di punti in uno spazio euclideo a due o tre dimensioni Template:Vedi anche

Curvatura

La nozione di curvatura è alla base della geometria differenziale. Intuitivamente la curvatura è la misura di quanto una curva si discosti dalla linea retta (considerazioni analoghe valgono per le superfici rispetto al piano). Più precisamente, la curvatura misura la rapidità di variazione dell'inclinazione della tangente a una curva rispetto alla lunghezza di un arco; la variazione per unità di lunghezza misurata quando la lunghezza tende a zero[1] Se la concavità della curva e rivolta verso l'alto la curvatura è positiva, altrimenti è negativa. La curvatura può essere:

  • estrinseca misurabile confrontando le caratteristiche della curva rispetto allo spazio che la contiene. Viene definita tramite il cerchio osculatore che è tangente alla curva e la approssima fino al secondo ordine: se la curva è "quasi diritta" il cerchio osculatore ha raggio molto grande e la curvatura è molto piccola; viceversa curvature grandi corrispondono a curve "molto pronunciate". La circonferenza ha curvatura costante;
  • intrinseca determinabile utilizzando solo operazioni eseguite su elementi dell'oggetto medesimo

Template:Vedi anche

Cuspide

Punto in cui si incontrano due rami di una curva che hanno la stessa tangente. Una cuspide si dice di:

  • prima specie se i due rami sono situati dalle parti opposte della tangente comune,
  • seconda specie se invece sono situati dalla stessa parte

Template:Vedi anche

D

Decagono

Poligono con 10 lati Template:Vedi anche

Decorativa (curva)

Qualunque curva che riproduce la forma di oggetti reali. Sono esempi di curve decorative quelle a forma di pesce, goccia d'acqua, bocca, croce di Malta, trifoglio, quadrifoglio, cuore, uovo, nodo di papillon, farfalla, svastica, Yin e Yang, mulino a vento, ecc. Spesso queste curve sono attenute imponendo valori particolari ai parametri costruttivi di curve più generali

Deltoide

Deltoide

Ipocicloide con tre cuspidi Template:Vedi anche

Dente di sega (onda a)

Così detta per la sua forma simile ai denti di una sega. Template:Vedi anche

Curva a dente di sega
Curva del diavolo

Diavolo (curva del)

Curva piana, algebrica di 4° grado di equazione cartesiana y4by2=x4ax2 così chiamata perché, scegliendo opportunamente i valori dei parametri a e b si ottiene una figura che ricorda un antico gioco detto diabolo. La curva prende il nome anche di motore elettrico perché può assumere anche le sembianze del rocchetto rotante di un motore elettrico

Differenziabile (curva)

Curva differenziabile in ogni suo punto, ovvero dotata di tangente (unica) in ogni punto. È detta anche curva regolare Template:Vedi anche

Differenziabile a tratti (curva)

Curva che, in un numero finito di punti, forma degli angoli in cui non è differenziabile, mentre rimane differenziabile in tutti gli altri punti. È detta anche curva regolare a tratti. I poligoni ne sono un tipico esempio Template:Vedi anche

Direttrice

Curva utilizzata per la costruzione geometrica di altre curve e superfici. La forma della curva direttrice varia a seconda di quello che si intende costruire: per esempio la direttrice per la costruzione delle coniche è una retta, quella per la costruzione di un cilindro è una circonferenza, ecc. Template:Vedi anche

Dissezione di un poligono

Divisione del poligono in un numero finito di parti e loro ricomposizione in un altro poligono, di uguale area Template:Vedi anche

Dodecagono

Poligono con 12 lati Template:Vedi anche

Doicosagono

Poligono con 22 lati Template:Vedi anche

Doppia goccia d'acqua o manubrio

Doppia goccia d'acqua

Detta anche dumbbell o manubrio per la sua somiglianza col manubrio che si adopera nelle palestre, è una curva piana, algebrica di 6° grado di equazione cartesiana b4y2=a2x4x6

Curva del dragone: 5º iterazione

Dragone (curva del)

Tipo di curva frattale che deve il suo nome alla somiglianza con un drago. Partendo da una curva (connessa) costituita da due segmenti uguali e perpendicolari, si sostituisce ognuno di essi con due segmenti fra loro perpendicolari che formino con l'originale un triangolo rettangolo isoscele, costruito alternativamente a destra o a sinistra del segmento originale; si itera poi il procedimento tante volte quante si vuole Template:Vedi anche

Dumbbell

Doppia goccia d'acqua

E

Eccentricità

Parametro, espresso da un numero positivo e associato ad ogni curva conica, che fornisce una misura di quanto la curva si discosta dalla circonferenza. In particolare l'eccentricità è zero per le circonferenze, minore di 1 per le ellissi, esattamente uguale ad 1 per le parabole, e maggiore di 1 per le iperboli Template:Vedi anche

Elica

Elica

Curva tridimensionale costruita avvolgendo, con inclinazione costante, una linea attorno ad un cilindro circolare retto. L'inclinazione della linea determina il passo dell'elica (distanza fra due punti che giacciono sulla stessa verticale). L'elica si dice destrogira o levogira a seconda che il passo sia positivo o negativo Template:Vedi anche

Ellisse

Ellisse

Curva conica chiusa, con eccentricità strettamente compresa strettamente tra 0 ed 1, che si presenta come una circonferenza allungata . Geometricamente è il luogo dei punti per cui la somma delle distanze da due punti fissati, detti fuochi, è costante Template:Vedi anche

Ellittica (curva)

Curva algebrica nello spazio proiettivo esprimibile tramite un'equazione della forma y2=x3+ax+b Template:Vedi anche

Endecagono

Poligono con 11 lati Template:Vedi anche

Endeicosagono

Poligono con 21 lati Template:Vedi anche

Ennacontagono

Poligono con 90 lati Template:Vedi anche

Ennadecagono

Poligono con 19 lati Template:Vedi anche

Ennagono

Poligono con 9 lati Template:Vedi anche

Epicicloide a tre cuspidi

Epicicloide

Curva piana generata da un punto di una circonferenza che rotola senza strisciare sulla parte esterna di un'altra circonferenza. Appartiene alla categoria delle rullette, ed è un caso particolare dell'epitrocoide Template:Vedi anche

Epitrocoide a otto lobi

Epitrocoide

Curva piana generata da un punto fissato ad un cerchio (posto ad una distanza qualunque dal suo centro) che rotola, senza strisciare, all'esterno di un altro cerchio. Appartiene alla categoria delle rullette. La epicicloide è un caso particolare di epitrocoide in cui il punto preso in considerazione giace sul bordo del cerchio Template:Vedi anche

Eptadecagono

Poligono con 17 lati Template:Vedi anche

Equazione di una curva

Equazione che descrive analiticamente una curva e ne definisce il luogo dei punti. In base al sistema di coordinate adottato, l'equazione prende nomi differenti:

Template:Vedi anche

Errori (curva degli)

Gaussiana

Esacontagono

Poligono con 60 lati Template:Vedi anche

Esadecagono

Poligono con 16 lati Template:Vedi anche

Esagono

Poligono con 6 lati Template:Vedi anche

Esaicosagono

Poligono con 26 lati Template:Vedi anche

Ettacontagono

Poligono con 70 lati Template:Vedi anche

Ettagono

Poligono con 7 lati Template:Vedi anche

Evoluta

L'evoluta di una curva piana è un'altra curva piana generata dai centri di curvatura della curva stessa. Viceversa, la prima curva prende il nome di evolvente della seconda. Template:Vedi anche

Evolvente

Vedere Evoluta. In particolare l'evolvente del cerchio è la curva generata dal punto di contatto fra una retta e una circonferenza quando la prima rotola senza strisciare sulla seconda Template:Vedi anche

F

Curva a forma di farfalla

Farfalla (curva a forma di)

Curva piana a forma di farfalla. La sua equazione polare è ρ=ecos(t)2cos(4t)+sin5(t/12). Facendo variare θ per multipli di 2π, si ottengono le "striature" delle ali della farfalla

Esempio di figura di Lissajous

Figura di Lissajous

Famiglia di curve utilizzate per rappresentare moti oscillatori. Esse sono descritte mediante equazioni parametriche trigonometriche Template:Vedi anche

Fiocco di neve

Fiocco di neve

Curva frattale con la forma di un fiocco di neve. Si ottiene costruendo tre curve di Koch sui lati di un triangolo equilatero. Un'altra curva che ricorda il fiocco di neve è quella costruita alla frontiera dell'isola di Gosper, spazio riempito dalla curva di Gosper (ottenuta partendo da un esagono regolare) Template:Vedi anche

Folium di Cartesio

Folium di Cartesio

Curva piana, algebrica, cubica, con equazione cartesiana x3+y33axy=0 con un nodo e un “occhiello” che assomiglia vagamente ad una foglia. Caso particolare di Tridente di Newton Template:Vedi anche

Folium Simple

Vedere Ovale di Keplero

Frattale (curva)

Una curva si dice frattale quando è autosimile, ovvero la struttura della curva è indipendente dalla scala con cui la si osserva. Questo significa che ingrandendo con una lente una porzione della curva, quest'ultima apparirà tanto ricca di particolari quanto la curva intera, e lo stesso fenomeno si riprodurrà ingrandendo ulteriormente un numero infinito di volte. Le curve frattali si ottengono come limite di una successione infinita di curve, ognuna delle quali viene ottenuta dalla precedente con una semplice legge di sostituzione di una sua parte con altre parti. Per esempio si può iniziare con un segmento (curva iniziale), quindi dividerlo in tre parti uguali e sostituire la parte centrale con due segmenti di lunghezza uguale a quella del segmento sostituito (prima trasformazione), quindi procedere nello stesso modo per ognuno dei quattro segmenti della nuova curva (seconda trasformazione), e così via, all'infinito. Le curve frattali hanno due caratteristiche fondamentali:

  • sono funzioni continue, ma non derivabili in alcun punto (quindi non ammettono tangenti)
  • presi due punti qualunque della curva, la lunghezza della porzione di curva contenuta fra di essi è infinita

Template:Vedi anche

Fuoco

Particolare punto utilizzato per la costruzione di curve coniche. In particolare il fuoco di una circonferenza è il suo centro, l'ellisse ha due fuochi e la parabola viene costruita tramite il fuoco e una retta direttrice Template:Vedi anche

G

Gaussiana

Gaussiana

Detta anche Curva di Gauss, Curva degli errori, Curva a campana, rappresenta la funzione di densità di probabilità per una distribuzione normale di una variabile casuale continua Template:Vedi anche

Goccia d'acqua

Quartica piriforme

Quarta iterazione della costruzione Curva di Gosper

Gosper (curva di)

Curva di Peano, frattale. Viene ottenuta come curva limite di una successione di linee spezzate, partendo da un segmento che viene, ad ogni iterazione, piegato più volte in diverse direzioni. Lo spazio delimitato dalla curva di Gosper non è un rettangolo, ma un insieme frattale chiamato isola di Gosper che assomiglia ad un ingranaggio, o meglio ad un fioco di neve Template:Vedi anche

Grado di una curva algebrica

Grado dell'equazione algebrica, ovvero del polinomio utilizzato per descrivere la curva. Le curve di 2º grado sono dette coniche, quelle di 3º grado cubiche, quelle di 4º grado quartiche, quelle di 5º grado quintiche, quelle di 6º grado sestiche

Grafico di una funzione

Data una funzione y=f(x), il luogo dei punti (x,y) che la soddisfa, prende il nome di grafico della funzione f in quanto può essere rappresentato graficamente utilizzando un opportuno sistema di coordinate. Se la funzione f agisce sui numeri reali, il suo grafico è una curva Template:Vedi anche

Gutschoven (curva di)

Kappa (curva)

H

Hilbert (curva di)

Esempio di curva di Peano che ricopre interamente un quadrato. Viene ottenuta come curva limite di una successione di linee spezzate. Il primo elemento della successione della curva di Hilbert si ottiene dividendo il quadrato da ricoprire in quattro quadrati uguali e congiungendo i loro centri con una spezzata. Ogni elemento successivo della successione si ottiene dividendo ulteriormente in quattro quadrati uguali ogni quadrato costruito nel passo precedente e tracciando una spezzata che ne congiunga tutti i centri Template:Vedi anche

I

Icosagono

Poligono con 20 lati Template:Vedi anche

Indifferenza (curva di)

Utilizzata in microeconomia, è la curva che collega tutti i punti che hanno lo stesso livello di utilità. Template:Vedi anche

Intrecciata (curva)

Curva che si sovrappone a sé stessa almeno in un punto (quindi ha almeno un punto multiplo), come, per esempio, una curva a forma di otto. Curva non semplice, Template:Vedi anche

Inviluppo (curva)

Una curva inviluppo di una famiglia data di curve è la curva tangente ad ogni curva della famiglia Template:Vedi anche

Iperbole

Iperbole

Conica costituita da due rami disgiunti. Ha due fuochi ed è definita come il luogo dei punti del piano cartesiano in cui è costante il valore assoluto della differenza delle distanze dai fuochi Template:Vedi anche

Iperellisse

Caso particolare di superellisse Template:Vedi anche

Due ipocicloidi, una con 5 Cuspidi, l'altra con un numero infinito di cuspidi

Ipocicloide

Curva generata da un punto su una circonferenza che rotola, senza strisciare, all'interno di un'altra circonferenza di raggio maggiore. Appartiene alla categoria delle rullette. Caso particolare di ipotrocoide Template:Vedi anche

Ipocicloide di Steiner

Deltoide

Ipoellisse

Caso particolare di superellisse Template:Vedi anche

Ipotrocoide (in rosso)

Ipotrocoide

Curva appartenente alla categoria delle rullette, generata da un punto fissato ad un cerchio che rotola all'interno di una circonferenza di raggio maggiore. In particolare, se il punto rotante giace sulla circonferenza, la curva prende il nome di ipocicloide Template:Vedi anche

Esempi di ippopede

Ippopede

Curva algebrica quartica con equazione polare ρ2=4b(absin2θ). È una sezione spirica in cui il piano secante è tangente alla parte interna del toro. Il nome letteralmente significa piede di cavallo Template:Vedi anche

Isometrica (curva)

Curva di livello

J

Jordan (curva di)

Qualunque curva piana, chiusa, non intrecciata che soddisfa il teorema di Jordan, ovvero che divida il piano i due parti, una interna e l'altra esterna Template:Vedi anche

K

Curva kappa

Kappa (curva)

Detta anche curva di Gutschoven, è una quartica piana che assomiglia alla lettera greca κ (kappa). Soddisfa l'equazione cartesiana x4+x2y2=a2y2 Template:Vedi anche

Kochanek-Bartels (curva di)

Detta anche Spline di Kochanek-Bartels, vedere Spline Template:Vedi anche

Curva di Koch

Koch (curva di)

Curva frattale definita come il limite di una successione di curve costruite in modo ricorsivo: partendo da un segmento, si costruisce il secondo elemento della successione dividendolo in tre parti uguali e sostituendo la parte centrale con due segmenti identici; si itera poi ripetendo questo procedimento per ogni nuovo segmento. La curva di Kock, come tutte le curve frattali, è continua ma non derivabile in alcun punto. Costruendo curve di Koch sui lati di un triangolo equilatero, si ottiene una curva a fiocco di neve Template:Vedi anche

L

Lemniscata

Qualunque curva piana a forma di otto rovesciato. Vale la pena ricordare la:

Lemniscata di Bernoulli
Esempi di Lemniscata di Booth
Lemniscata di Gerono

Template:Vedi anche

Limaçon

Lumaca di Pascal

Linea spezzata

Insieme ordinato di segmenti consecutivi (il punto finale del precedente coincide col punto iniziale del successivo), ma non giacenti sulla stessa retta e non necessariamente giacenti sullo stesso piano. Una linea spezzata chiusa prende il nome di poligonale Template:Vedi anche

Lituo

Lituo

Particolare spirale di Archimede in cui, se espressa in coordinate polari, l'angolo θ è inversamente proporzionale al quadrato del raggio ρ . Template:Vedi anche

Livello (curva di)

Una curva di livello di una funzione in due variabili è una curva lungo la quale la funzione assume sempre lo stesso valore. Generalmente si rappresentano alcune fra le infinite curve di livello di una funzione tramite la loro proiezione su un unico piano, generando così un grafico facilmente analizzabile per lo studio del comportamento della funzione stessa. Le curve di livello (chiamate anche curve isometriche) assumono nomi diversi a seconda della tipologia di funzione che rappresentano; vale la pena ricordare le tipologie più comuni:

Template:Vedi anche

Curva logistica

Logistica (curva)

Curva a forma di S (prende anche il nome di Curva ad S) che descrive la crescita di alcuni tipi di popolazioni: all'inizio la crescita è molto elevata, poi rallenta, diventando quasi nulla Template:Vedi anche

Logociclica (curva)

Strofoide retta. Vedere Strofoide

Lossodromia (sfera o di una superficie di rivoluzione)

sono le linee curve che tagliano i meridiani della superficie (o della sfera, se si parla della lossodromia della sfera) secondo uno stesso angolo.

Template:Vedi anche

Lumaca di Pascal

Lumaca di Pascal

Curva piana, algebrica, quartica dalla forma simile al guscio di una lumaca. In coordinate cartesiane ha equazione (x2+y2bx)2=a2(x2+y2) Template:Vedi anche

Luogo bipolare

Luogo geometrico (in particolare una curva) la cui costruzione viene eseguita a partire da due punti fissi (detti fuochi). Fanno parte di questa categoria l'ellisse, l'ovale di Cassini, la lemniscata di Bernoulli, ecc.

M

Maglia

In un sistema di coordinate curvilinee, è il quadrangolo, con i lati curvi, delimitato da quattro linee del sistema

Manubrio (curva a)

Doppia goccia d'acqua

Miriagono

Poligono con 10.000 lati Template:Vedi anche

Motore elettrico (curva del)

Caso particolare di curva del diavolo

Mulino a vento

Mulino a vento (curva a)

Curva che assomiglia alle pale di un mulino a vento. Caso particolare di curva nodale con coefficiente n=2, ha equazione polare ρ=acot(2θ)

N

Nefroide

Nefroide

Template:Vedi anche La nefroide è una particolare epicicloide a due cuspidi che ha la forma di un rene.Ha equazioni parametriche x=a(3cos(t)cos(3t));y=a(3sin(t)sin(3t)). Appartiene alla categoria delle rullette

Nello spazio (curva)

Curva tridimensionale, ovvero che non giace su un unico piano

Esempio di curva nodale con n=1/5

Nodale (curva)

Una qualunque curva con equazione polare parametrica ρ=atan(nθ) caratterizzate dall'essere formate da un ramo di base (infinito) e varie ripetizioni dello stesso ruotati successivamente dello stesso angolo. Il parametro a determina la larghezza del ramo di base, e il parametro n (che deve essere maggiore di zero), determina l'angolo di rotazione dei rami stessi. Casi particolari:

Nodo

Template:Vedi anche

Curva NURBS con i punti di controllo

NURBS

Acronimo di Non Uniform Rational B-Splines (B-Splines razionali non uniformi), sono una generalizzazione delle curve B-Spline e delle curve di Bézier. Sono utilizzate nella computer grafica per rappresentare curve e superfici Template:Vedi anche

O

Ogiva

Gaussiana

Omeomerica (curva)

Una curva è omeomerica se esiste una trasformazione rigida che trasforma la curva in sé stessa, trasportando un punto prescelto in un altro punto prescelto. Esempi: circonferenza, elica cilindrica Template:Vedi anche

Oroptera (curva)

Curva tridimensionale ottenuta dall'intersezione di un paraboloide iperbolico equilatero e di un cilindro di rivoluzione con asse sul piano orizzontale parallelo all'asse y e passante per l'origine. È chiamata anche cerchio cubico Template:Vedi anche

Ottacontagono

Poligono con 80 lati Template:Vedi anche

Ottadecagono

Poligono con 18 lati Template:Vedi anche

Ottagono

Poligono con 8 lati Template:Vedi anche

Ovale

Qualunque curva piana e chiusa che ricordi la forma di un'ellisse o la forma di un uovo. In particolare sono notevoli le seguenti curve:

Ovali di Cassini
  • Ovale di Cassini: è una curva bipolare definita come il luogo dei punti del piano per cui è costante il prodotto della loro distanza da due punti prefissati (detti fuochi)
  • Ovale di Cartesio: curva bipolare quartica definita come il luogo dei punti per i quali la somma delle distanze da due punti prefissati (detti fuochi), ognuna moltiplicata per un diverso coefficiente, è costante. Se entrambi i coefficienti moltiplicativi sono uguali ad 1, si ottiene una ellisse.
Uovo di Keplero
Uovo di Granville
Doppio uovo

Template:Vedi anche

P

Parallelogramma

Quadrilatero con i lati a due a due paralleli Template:Vedi anche

Nodo di papillon

Papillon (curva a)

Curva algebrica di 8º grado con la forma di un nodo di papillon. Ha equazione cartesiana x4(x2+y2)=(x2y2)2

Parabola

Parabola

Conica definita come il luogo dei punti equidistanti da una retta (direttrice) e da un punto (fuoco) non appartenente alla retta Template:Vedi anche

Paraciclo

Astroide

Peano (curve di)

Classe di curve piane, continue, che ricoprono interamente una porzione di piano (per esempio, un quadrato). Si ottengono come limite di una successone di curve continue. La curva di Hilbert, la curva di Gosper e la curva di Sierpinski sono esempi di curve di Peano Template:Vedi anche

Pentacontagono

Poligono con 50 lati Template:Vedi anche

Pentadecagono

Poligono con 15 lati Template:Vedi anche

Pentagono

Poligono con 5 lati Template:Vedi anche

Pentaicosagono

Poligono con 25 lati Template:Vedi anche

Curva a forma di pesce

Pesce (curva a forma di)

Curva piana algebrica di 4° grado con la forma di un pesce. È definita tramite l'equazione cartesiana (x2y2+a2(1k2/2))2=(a2y2)(2x+k2a/2)2 con i parametri a e k opportunamente scelti

Piana (curva)

Curva che giace completamente su un piano Template:Vedi anche

Podaria

La podaria di una curva rispetto ad un punto P detto polo è il luogo delle proiezioni di P sulle tangenti alla curva. La curva originaria è detta anche antipodaria Template:Vedi anche

Polare (curva)

Curva che può essere espressa tramite un sistema di coordinate polari. Curva generata attraverso un punto fisso detto polo Template:Vedi anche

Polare reciproca (curva)

Due curve tali che il polare di ogni punto di una di esse sia tangente all'altra. Si dicono polo e polare, di una conica rispettivamente un punto (il polo della retta) e la retta (il polare del punto) che costituiscono il luogo dei punti di intersezione delle tangenti a una conica data nei due punti nei quali una secante passante per il polo taglia la conica (questi sono i coniugati armonici del polo rispetto alla secante). Analiticamenle l'equazione del polare si ottiene sostituendo nell'equazione generale di una tangente alla conica le coordinate del punto di contatto con le coordinare del polo dato. Quando il punto è situato esternamente alla conica in modo che è possibile tracciare due tangenti da questo alla conica, il polare è la secante passante per i punti di contatto corrispondenti[2]

Poligonale

Linea spezzata chiusa, cioè col primo estremo del primo segmento coincidente col secondo estremo dell'ultimo. Non necessariamente la poligonale giace su un piano Template:Vedi anche

Poligono

Poligonale piana, ovvero spezzata chiusa che giace interamente sullo stesso piano. I poligoni si possono suddividere in:

Template:Vedi anche

Punto

Entità adimensionale spaziale; può essere considerato semplicemente come una posizione. Una curva (più in generale, qualunque figura geometrica) è un insieme di punti. In una curva di equazione f(x,y)=0, si distinguono varie tipologie di punto:

  • punto semplice: un punto in cui la curva sia continua, derivabile e abbia il gradiente non nullo. Nelle curve non patologiche essi costituiscono la stragrande maggioranza dei punti. In un punto semplice una curva ha una sola tangente che non la attraversa;
  • punto multiplo : punto non semplice, cioè punto in cui entrambe le derivate parziali della funzione f(x,y)=0 della curva si annullano. Per determinare la molteplicità del punto bisogna contare quante volte una retta passante per quel punto interseca la curva in quel punto (numero delle soluzioni coincidenti del sistema di equazioni della curva e della retta). Un punto di molteplicità 2 è detto punto doppio, di molteplicità 3 triplo, ecc.;
  • punto multiplo ordinario : punto multiplo in cui tutte le tangenti alla curva sono distinte;
  • nodo: punto doppio con tangenti distinte (quindi doppio ordinario);
  • cuspide: punto doppio con tangenti coincidenti;
  • punto ordinario o regolare: punto semplice in cui la tangente ha esattamente un contatto di ordine 1;
  • punto singolare: punto non ordinario, come, per esempio, un punto multiplo;
  • punto angoloso: punto in cui esistono entrambe le derivate destra e sinistra, ma non sono coincidenti
  • punto di flesso: punto semplice in cui la tangente ha un contatto di ordine almeno 2 (si chiama punto di flesso ordinario se il contatto è esattamente di ordine 2). La tangente alla curva in un punto di flesso si chiama tangente d'inflessione

Template:Vedi anche

Q

Quadrifoglio

Quadrifoglio (curva a forma di)

Caso particolare di rodonea a quattro petali, è una curva a forma di quadrifoglio la cui equazione cartesiana di 6° grado è (x2+y2)3=4a2x2y2. Altre tipologie di curve a forma di quadrifoglio possono essere ottenute dalle formule generali descritte per le curve a forma di trifoglio (trifoglio di Brocard e trifoglio di Habenicht) imponendo n=4

Quadrilatero

Poligono con 4 lati. Un quadrilatero regolare si chiama quadrato Template:Vedi anche

Quadrato

Quadrilatero regolare, ovvero con tutti i lati della stessa lunghezza e tutti gli angoli fra loro uguali Template:Vedi anche

Quartica (curva)

Curva algebrica piana di 4° grado Template:Vedi anche

Quartica piriforme o “goccia d'acqua”

Quartica piriforme

Quartica di equazione b2y2=x3(ax) che assume la forma di pera o di goccia d'acqua

Quintica (curva)

Curva algebrica piana di 5° grado Template:Vedi anche

R

Razionale (curva)

Curva che può essere espressa mediante equazioni parametriche del tipo: x=Px(t)Q(t); y=Py(t)Q(t) cioè mediante un rapporto fra polinomi

Regolare (curva)

Curva differenziabile

Regolare a tratti (curva)

Curva differenziabile a tratti

Retta

Curva aperta con curvatura nulla in ogni punto. È un ente geometrico primitivo con una sola dimensione Template:Vedi anche

Rettangolo

Quadrilatero con tutti gli angoli retti Template:Vedi anche

Rodonea a 8 petali.

Rodonea

Curva algebrica o trascendente il cui grafico è caratterizzato da una serie di avvolgimenti attorno ad un punto centrale. Tali avvolgimenti possono produrre figure a forma di rosone, o di petali di un fiore, da cui il nome. La rodonea si può considerare un caso particolare di ipocicloide. Template:Vedi anche

Rombo

Quadrilatero con tutti i lati della stessa lunghezza e a due a due paralleli Template:Vedi anche

Rulletta

Curva descritta da un punto (chiamato polo o generatore) solidale con una data curva che rotola senza strisciare su una seconda curva che rimane fissa. È la generalizzazione delle cicloidi, epicicloidi, ipocicloidi, ipotrocoidi in cui la curva che rotola è una circonferenza Template:Vedi anche

S

S (curva ad)

Curva Logistica

Secante

In geometria la secante di una curva è una retta che interseca la curva in due o più dei suoi punti Template:Vedi anche

Secantoide

Secantoide

Curva che rappresenta la funzione trigonometrica secante Template:Vedi anche

Semplice (curva)

Curva che non si sovrappone mai a sé stessa (non ha punti multipli), ovvero curva la cui la funzione è iniettiva nei punti interni. Una curva non semplice prende il nome di curva intrecciata Template:Vedi anche

Sestica (curva)

Curva algebrica piana di 6° grado Template:Vedi anche

Sezione conica

Conica

Sezione spirica

Caso particolare di sezione torica: le sezioni spiriche sono sezioni toriche in cui il piano che interseca il toro è parallelo all'asse di simmetria rotazionale di quest'ultimo Template:Vedi anche

Sezione torica

Intersezione di un piano con un toro Template:Vedi anche

Sferica (curva)

Curva che giace su una superficie sferica Template:Vedi anche

Secondo elemento della successione per la costruzione della curva di Sierpinski

Sierpinski (curva di)

Esempio di curva di Peano che riempie completamente un quadrato. Viene ottenuta come limite di una successione di spezzate chiuse Template:Vedi anche

Sigmoide

Caso particolare di curva logistica

Sinusoide

Sinusoide

Curva che rappresenta la funzione trigonometrica seno Template:Vedi anche

Spezzata

Linea spezzata

Spirale

Curva polare che si avvolge in spire attorno ad un determinato punto centrale (polo), allontanandosi progressivamente da esso. Si conoscono diverse tipologie di spirale che differiscono sulla legge di costruzione delle spire:

Esempio di epispirale
  • Epispirali famiglia di curve, non propriamente a spirale, che possono essere considerate le inverse delle rodonee; infatti hanno equazione polare ρ=acosnθ dove n è il numero di rami della curva
    Spirale di Archimede
  • Spirale archimedea o spirale di Archimede in cui la distanza fra le spire è costante
  • Spirale di Cornu o Clotoide o Spirale di Eulero in cui la curvatura aumenta mano a mano che ci si allontana del polo
    Spirale di Fermat
  • Spirale di Fermat o Spirale parabolica: è un tipo di spirale archimedea in cui due rami della spirale si avvolgono su sé stessi
Spirale iperbolica
Spirale logaritmica
  • Spirale logaritmica o Spirale equiangolare o Spirale di crescita in cui la distanza fra le spire aumenta in modo esponenziale
  • Spirale sferica: conosciuta anche con il nome clelia, si definisce come la traiettoria di un punto P che si muove a velocità costante su un meridiano della sfera, che a sua volta quest'ultimo ruota sull'asse polare. La spirale sferica passa per i poli. Sulla sfera, l'elica sferica, spirale sferica e lossodromia della sfera sono tre curve differenti.
    Lituo
  • Lituo è una particolare spirale di Archimede in cui, se espressa in coordinate polari, l'angolo è inversamente proporzionale al quadrato del raggio.

Template:Vedi anche

Spirica di Perseo

Sezione spirica

Spirograph

Strumento per la produzione di epicicloidi e ipotrocoidi Template:Vedi anche

Spline

Curva composita, costruita congiungendo, con continuità e differenziabilità, tratti di curve polinomiali, in modo da interpolare un insieme di punti (nodi della spline) in un'unica curva continua e differenziabile, almeno fino alla derivata seconda. Spline è ormai diventato sinonimo di curva polinomiale a tratti. Vale la pena ricordare i seguenti tipi di curve spline:

Template:Vedi anche

Staffa

Staffa

Curva algebrica di 5° grado che ricorda la forma di una staffa. Ha equazione cartesiana (x21)2=y2(y1)(y2)(y+5)

Strofoide retta

Strofoide

Curva algebrica di 3° grado. È il luogo dei punti d'incontro generato da una circonferenza di centro C e passante per un punto fisso O, con la retta che congiunge il centro della circonferenza con un altro punto fissoA, posto al di fuori della circonferenza stessa, quando il centro della circonferenza percorre tutta la retta r passante per C e per O. Se il segmento che congiunge i punti fissi O ed A è perpendicolare alla retta r, la curva prende il nome specifico di strofoide retta, altrimenti di strofoide obliqua

Ipoellisse con a = b = 1 e n = 1/2

Superellisse

Curva la cui equazione cartesiana è, in un certo senso, la generalizzazione di quella dell'ellisse: le superellissi sono infatti descritte da equazioni tipo; |xa|n+|yb|n=1,

con n,a,b reali positivi (l'ellisse si ottiene imponendo n = 2). Le superellissi si specializzano in ipoellissi se n<2 e in iperellissi se n>2 Template:Vedi anche

Supershape

Famiglia di curve ottenute generalizzando le curve circolari facenti uso delle funzioni trigonometriche in coordinate polari Template:Vedi anche

Supporto di una curva

Immagine della parametrizzazione di una curva Template:Vedi anche

Svastica

Svastica

Curva algebrica di 4° grado la cui parte centrale assomiglia ad una svastica. Ha equazione cartesiana 2xy=x4y4 ed equazione polare ρ2=tan(2θ)

T

Tangente

In geometria la tangente ad una curva in un punto è, intuitivamente, una retta che tocca la curva in un punto, ma non la attraversa nelle sue immediate vicinanze. Più precisamente, presa una retta secante alla curva, la si fa ruotare attorno ad uno dei punti di intersezione in modo che l'altro punto di intersezione si avvicini ad esso: quando i due punti di intersezione coincidono, quella particolare secante diventa la tangente alla curva in quel punto. La tangente è intimamente legata al concetto di derivata Template:Vedi anche

Tangentoide

Tangentoide

Curva che rappresenta la funzione trigonometrica tangente Template:Vedi anche

Tetracuspide

Astroide

Tetracontagono

Poligono con 40 lati Template:Vedi anche

Tetradecagono

Poligono con 14 lati Template:Vedi anche

Tetraicosagono

Poligono con 24 lati Template:Vedi anche

Trapezio

Quadrilatero con due lati fra loro paralleli Template:Vedi anche

Trascendente (curva)

Curva che non può essere descritta tramite polinomi algebrici, ma necessita di almeno una funzione trascendente. Curva che non è algebrica Template:Vedi anche

Trasformata di Newton

Data una coppia di curve Γ1 e Γ2 ed un sistema di assi cartesiani Ox,y, si consideri una retta passante per l'origine che interseca le due curve rispettivamente in P e Q. Sia M l'intersezione della parallela all'asse x passante per P e della parallela all'asse y passante per Q. Il luogo geometrico di tali punti, costruito facendo ruotare la retta passante per il centro si chiama trasformata di Newton di Γ1 e Γ2 rispetto ad Ox,y.

Trattrice

Trattrice

Curva tale che il segmento di tangente in un suo punto, compreso tra il punto stesso e una retta fissa, rimane costante Template:Vedi anche

Triacontagono

Poligono con 30 lati Template:Vedi anche

Triaicosagono

Poligono con 23 lati Template:Vedi anche

Triangolo

Poligono con 3 lati. Un triangolo equilatero è anche regolare Template:Vedi anche

Triangolo di Reuleaux

Triangolo di Reuleaux

Curva convessa ad ampiezza costante basata sul triangolo equilatero: tutti i punti del contorno sono equidistanti dal vertice opposto Template:Vedi anche

Triangolo di Sierpinski

Triangolo di Sierpinski

Esempio di Curva frattale Template:Vedi anche

Tridecagono

Poligono con 13 lati Template:Vedi anche

Tridente di Newton con a=b=c=d=1

Tridente di Newton

Qualunque cubica razionale esprimibile con una equazione cartesiana della forma: xy=ax3+bx2+cx+d. Il Folium di Cartesio è un caso particolare di tridente di Newton

Tridimensionale (curva)

Curva non contenuta interamente in un piano, ma estesa nello spazio tridimensionale Template:Vedi anche

Trifoglio equilatero (in blu) e trifoglio regolare (in rosso)
Trifoglio di Habenicht
Trifoglio di Brocard

Trifoglio (curve a forma di)

Curve a forma di trifoglio. In genere sono ottenute imponendo parametri particolari in famiglie più generali di curve. Vale la pena ricordare:

  • Trifoglio equilatero: caso particolare di epispirale a tre bracci (in cui si impone n=3)
  • Trifoglio regolare: rodonea a tre petali. È la curva inversa della precedente
  • Trifoglio di Habenicht: caso particolare della curva di equazione polare ρ=1+cosnθ+sin2nθ con n=3
  • Trifoglio di Brocard: caso particolare della curva di equazione (ρ23ρcosnθ+2)2=ρ24ρcosnθ+4 con n=3

Trisettrice di Longchamps

Trifoglio equilatero

Trocoide

Altro nome, più generale, della cicloide: il punto generatore non deve stare necessariamente sul bordo del cerchio rotolante, ma può essere interno o esterno, purché rigidamente collegato ad esso. Comprende quindi la cicloide allungata e quella accorciata Template:Vedi anche

U

Uovo (curve a forma di)

Vedere ovale

V

Versiera

Versiera di Agnesi

Curva cubica con forma a campana, simile alla gaussiana Template:Vedi anche

Y

Curva della Yin e dello Yang

Yin e Yang (curva dello)

Curva che ripete il simbolo cinese dello Yin e Yang ottenuta componendo la circonferenza di raggio 2π con la curva di equazione polare ρ2=θ(4πθ)

Note

  1. Dizionario Collins della matematica – E.J. Borowski – Edizione on-line. pag. 95
  2. Dizionario Collins della matematica – E.J. Borowski – Edizione on-line. pag. 291-292

Voci correlate

Collegamenti esterni

Template:Portale