Elettrodinamica classica

Da testwiki.
Vai alla navigazione Vai alla ricerca

In fisica l'elettrodinamica classica (o semplicemente elettrodinamica) è la teoria che descrive i campi elettromagnetici generati da un insieme di cariche elettriche in moto includendo i principi della relatività ristretta.

Gli effetti dinamici di cariche e correnti elettriche furono studiati da Pierre Simon Laplace, Michael Faraday, Heinrich Lenz e molti altri già dagli inizi dell'Ottocento, tuttavia uno studio coerente e logicamente completo dei fenomeni elettromagnetici può essere effettuato solamente a partire dalla teoria della relatività.

Descrizione

L'elettrodinamica classica utilizza il formalismo dei tensori e dei quadrivettori per scrivere le equazioni di Maxwell in forma covariante per trasformazioni di Lorentz, introducendo un quadripotenziale che estende i potenziali scalare e vettore del caso stazionario: in questo modo cariche e correnti elettriche vengono descritte dal quadrivettore densità di corrente jμ dove la parte "temporale" del quadrivettore è giocata dalla densità di carica (moltiplicata per la velocità della luce c) e la parte "spaziale" dalla densità di corrente elettrica.

I potenziali hanno similmente: un quadripotenziale Aμ è costituito da una parte spaziale data dal potenziale vettore (relativo al campo magnetico) e parte temporale dal potenziale scalare (del campo elettrico).

L'equazione fondamentale a cui obbedisce il quadripotenziale (nel gauge di Lorenz νAν=0) è:

Aμ=λλAμ=μ0jμ

scritta anche, esplicitando l'operatore d'Alembertiano:

2Aμx2+2Aμy2+2Aμz21c22Aμt2=μ0jμ

Per la linearità dell'equazione, le possibili soluzioni per il quadripotenziale sono la somma delle possibili soluzioni dell'equazione omogenea (le soluzioni ondose) più una soluzione particolare che non rientra in quelle precedenti (potenziali ritardati).

Per trovare, allora, una soluzione particolare, si possono utilizzare le funzioni di Green, la trasformata di Fourier e le proprietà della distribuzione delta di Dirac.

Basta trovare una funzione G che soddisfi

(1)xG(xx)=δ(xx)

dove x=(ct,𝐱) e x=(ct,𝐱) sono quadrivettori e il quadripontenziale Aμ cercato sarà dato da:

(2)Aμ=μ0d4xG(xx)jμ(x)

infatti, applicando l'operatore x alla (1) si ha:

xAμ=μ0d4xxG(xx)jμ(x)=μ0d4xδ(xx)jμ(x)=μ0jμ(x)

in quanto x non agisce sulle x e può passare sotto il segno di integrale.

Prendendo la trasformata di Fourier di entrambi i membri della (1) si ha che G~ (che è la trasformata di G) deve soddisfare:

G~=1kμkμ

ed applicando l'antitrasformata di Fourier (imponendo anche G(xx)=0 per istanti di tempo t<t):

G(xx)=δ(tt|𝐱𝐱|c)4π|𝐱𝐱|

Il quadripotenzile diventa, infine:

Aμ(𝐱,t)=μ04πd4xjμ(x)δ(tt|𝐱𝐱|c)|𝐱𝐱|=μ04πd3𝐱jμ(𝐱,t|𝐱𝐱|c)|𝐱𝐱|.

Così, il potenziale Aμ, all'istante di tempo t, sarà determinato dalla quadricorrente, nell'istante t=t|𝐱𝐱|c), perché l'interazione elettromagnetica si propaga con una velocità finita pari a c (da ciò deriva il nome di potenziale ritardato).

È possibile scrivere un tensore doppio di campo elettromagnetico Fμν definito utilizzando il quadripotenziale A :

Fμν=μAννAμ

In questo tensore le componenti spaziali sono date dal campo magnetico, quelle temporali dal campo elettrico. Le quattro equazioni di Maxwell possono essere riscritte utilizzando questo tensore ed il suo duale.

Le due equazioni vettoriali non omogenee si riducono a:

μFμν=4πcjν

mentre le equazioni di Maxwell omogenee si scrivono:

μ*Fμν=0

dove *Fμν rappresenta il duale del tensore del campo elettromagnetico.

Voci correlate

Altri progetti

Template:Interprogetto

Template:Controllo di autorità Template:Portale