Successione esatta

Da testwiki.
Vai alla navigazione Vai alla ricerca

Template:S In matematica, più precisamente in algebra omologica, una successione esatta è una successione di oggetti (che possono essere gruppi abeliani, moduli, spazi vettoriali o altro) e di morfismi in cui l'immagine di ognuno di essi coincida col nucleo del successivo. La nozione di successione esatta ha senso in ogni categoria abeliana.

Una successione esatta nella forma

0AfBgC0

dove 0 rappresenta l'"oggetto nullo" (ad esempio il gruppo banale o lo spazio vettoriale di dimensione 0) è detta successione esatta corta: se f e g sono funzioni, allora f è iniettiva e g è suriettiva. Se invece la successione esatta è infinita è detta lunga.

Un altro caso particolare è la successione

0AfB0

che è esatta se e solo se f è un isomorfismo.

Altri progetti

Template:Interprogetto

Collegamenti esterni

Template:Portale