Fenomeni di trasporto

Da testwiki.
Versione del 8 lug 2024 alle 14:58 di imported>Retaggio (Annullata la modifica di 121.214.82.14 (discussione), riportata alla versione precedente di Albe.26.1)
(diff) ← Versione meno recente | Versione attuale (diff) | Versione più recente → (diff)
Vai alla navigazione Vai alla ricerca

In fisica i fenomeni di trasporto sono meccanismi di trasporto di quantità fisiche che presentano analogie nella loro natura a livello molecolare, nella loro descrizione come modello matematico, e nella loro occorrenza nei processi di produzione industriale, biologici, agricoli o agroalimentari, e meteorologici.

Ambiti interessati

I fenomeni di trasporto riguardano diversi ambiti della scienza, tra cui:

Questi meccanismi di trasporto elementari sono replicati in scala macroscopica nelle operazioni unitarie, il cui sfruttamento a livello industriale viene realizzato attraverso impianti ove si realizzino trasformazioni fisico-chimiche.

Modelli lineari di trasporto

I tre meccanismi di trasporto possono essere descritti nell'approssimazione di corpo continuo da tre relazioni costitutive lineari analoghe tra loro: seguendo l'ordine delle equazioni di Navier, per la massa la legge di Fick, per la quantità di moto la legge di Newton, per l'energie infine la legge di Fourier per il flusso termico.

Massa

Template:Vedi anche La legge di Fick afferma che in presenza di un gradiente di concentrazione, un flusso di materia J viene indotto in direzione ad esso opposta e proporzionale ad esso attraverso la costante di proporzionalità 𝒟AB, detta diffusività di materia. In termini matematici:

Jx=𝒟ABΦx

Nello spazio tridimensionale, la legge diventa:

𝐉Φ=𝒟ijΦ

La proprietà di trasporto è dunque la diffusività e la grandezza oggetto di trasporto è in questo caso la materia (con riferimento alle moli).

Quantità di moto

Template:Vedi anche

Moto laminare tra due pareti, in cui è evidenziato lo sforzo e l'effetto di variazione della velocità del fluido.

La legge di Newton approssima linearmente la relazione tra la pressione applicata a una parete che chiude da una parte un fluido e la variazione di velocità a distanza crescente dalla parete stessa. Se lo sforzo è diretto lungo l'asse x, si verifica che la velocità lungo l'asse y decresce, quindi:

τyx=μvxy.

dove:

  • τxy è lo sforzo (espressa in Pa nel SI) per una forza applicata lungo x su una superficie perpendicolare all'asse y;
  • vx è la velocità lungo x (espressa nel SI in m/s);
  • μ è la viscosità (espressa in Pa·s).

La stessa legge può essere interpretata come il flusso di quantità di moto diretto lungo y e dovuto ad un gradiente di velocità tra i diversi "piani" via via più distanti dalla pareti: letta in questa modo, la legge descrive come ad una variazione imprevista dell'energia cinetica del sistema si oppone un flusso di quantità di moto atto a sopperire alla variazione in corso. Questo costituisce il primo fenomeno di trasporto e, pertanto, la viscosità è detta anche proprietà di trasporto. Nello spazio tridimensionale, la legge diventa:

τ__=μ𝐯

Energia

Template:Vedi anche

La legge di Fourier in una dimensione (x) caratterizza lo scambio termico (q) tra due sorgenti attraverso la superficie di scambio A.

La legge di Fourier asserisce che si instaura un flusso di calore q diretto in direzione opposta ad un gradiente di temperatura e proporzionale ad esso attraverso la costante di proporzionalità kT, detta conducibilità termica. In termini matematici:

qx=kTTx

Nello spazio tridimensionale, la legge diventa:

𝐪=kijT

dove kij è il tensore di conducibilità termica. L'interpretazione della legge nell'ottica dei fenomeni di trasporto vede quindi nella conducibilità termica la proprietà di trasporto.

Analogie tra i fenomeni di trasporto

Analogia tra le equazioni di trasporto

La velocità di trasporto, sia essa riferita al trasporto di calore, di materia o di quantità di moto, è esprimibile dal rapporto tra una forza spingente e una resistenza al trasporto. Nei tre casi elencati, la forza spingente è rispettivamente il gradiente di temperatura, il gradiente di concentrazione, e il gradiente di velocità.[1]

Considerando il caso semplice del trasporto lungo una direzione qualsiasi, le tre equazioni di trasporto elencate (legge di Newton, legge di Fourier e legge di Fick) possono essere espresse da un'unica equazione:

𝐣ψ=dψ

in cui:

  • 𝐣ψ è la densità di corrente (di calore, di materia o di quantità di moto) lungo la direzione x;
  • d è la diffusività (di calore, di materia o di quantità di moto);
  • ψ è il potenziale (di calore, di materia o di quantità di moto).

Analogie adimensionali

Anche tra i gruppi adimensionali che descrivono le condizioni del trasporto delle tre quantità (energia, materia e quantità di moto) sussistono forti analogie. In particolare, la seguente tabella mette a confronto in risalto l'analogia tra trasporto di calore e trasporto di materia:

Trasporto di calore Trasporto di materia
Gruppo adimensionale Formula Significato fisico Gruppo adimensionale Formula Significato fisico
Numero di Prandtl Pr=νa=cpηλ Rapporto tra diffusività cinematica e diffusività termica. Numero di Schmidt Sc=νD=ηρD Rapporto tra diffusività cinematica e diffusività massica
Numero di Nusselt Nu=hlλ Rapporto tra trasferimento convettivo e conduttivo di calore.[2] Numero di Sherwood[3] Sh=Nu*=kdlD Rapporto tra trasferimento convettivo e diffusivo di materia.[2]
Numero di Péclet Pe=RePr=vla=ρcpvlλ Rapporto tra il trasporto di calore convettivo e diffusivo (conduttivo). Numero di Péclet per il trasferimento di massa Pe*=ReSc=vlD Rapporto tra il trasporto di materia per convezione e per diffusione.
Numero di Colburn JH=NuRe1Pr1/3=hρcpv(cpηλ)2/3 Numero di Colburn per il trasferimento di materia JM=ShRe1Sc1/3=kdv(ηρD)2/3
Numero di Stanton St=NuRePr=hρvcp Numero di Stanton per il trasferimento di materia St*=ShReSc=kdv
Numero di Grashof Gr=ρ2gαΔTl3η2 Rapporto tra forze di galleggiamento e forze viscose. Numero di Grashof per il trasferimento di materia Gr*=ρgζΔxl3η2
Numero di Graetz Gz=dLPe=dLρcpvlλ=m˙cpλL Numero di Graetz per il trasferimento di materia Gz*=dLPe*=dLvlD=m˙ρLD

Di seguito è riportato il significato dei simboli utilizzati in tabella:[4]

Grazie alle analogie esistenti tra i diversi gruppi adimensionali, è possibile conoscere la soluzione di un problema a partire da un problema analogo, ad esempio possiamo ricavare il coefficiente di scambio di materia riconducendoci ad un problema analogo di scambio di calore.

Note

  1. In generale si parla di gradiente anziché differenza. La forza spingente può anche essere data da una differenza media logaritmica.
  2. 2,0 2,1 in regime turbolento
  3. Chiamato anche numero di Nusselt per il trasferimento di materia, Nu*
  4. Template:Cita 2.15

Bibliografia

Voci correlate

Altri progetti

Template:Interprogetto

Collegamenti esterni

Template:Controllo di autorità Template:Portale