Trasformata inversa di Laplace
In matematica, la trasformata inversa di Laplace o antitrasformata di Laplace è l'inversa della trasformata di Laplace. Entrambe hanno importanti applicazioni nello studio/analisi dei sistemi dinamici lineari.
Definizione
Detta la trasformata di Laplace, l'antitrasformata di Laplace di una funzione è la funzione tale che:
Si prova che se una funzione ha trasformata inversa , ovvero è una funzione continua a tratti che soddisfa la condizione precedente, allora è univocamente determinata.
Una formulazione integrale dell'antitrasformata di Laplace, chiamata anche integrale di Bromwich o formula inversa di Mellin, è data dall'integrale di linea:
dove l'integrazione avviene lungo la linea verticale nel piano complesso, con maggiore della parte reale di tutte le singolarità di . Questo assicura che la linea di contorno è nella regione di convergenza. Se tutte le singolarità di sono dalla parte sinistra del piano complesso o se non ha singolarità, allora può essere preso nullo e la formula diventa uguale alla trasformata di Fourier inversa. Infatti, se , si ha
Bibliografia
Voci correlate
Collegamenti esterni
- Template:PlanetMath
- Tables of Integral Transforms at EqWorld: The World of Mathematical Equations.
- Template:Cita web