Spazio prehilbertiano
In matematica, lo spazio prehilbertiano o spazio hermitiano è uno spazio vettoriale reale o complesso nel quale è definito un prodotto interno. Si tratta di una struttura algebrica che fa da collegamento tra lo spazio vettoriale semplice e lo spazio di Hilbert, che è uno spazio prehilbertiano completo, tale cioè che la metrica indotta dal prodotto interno sia completa.
Definizione
Uno spazio prehilbertiano è una coppia , dove è uno spazio vettoriale reale o complesso e è un prodotto interno.
Sia uno spazio vettoriale complesso o reale. Un prodotto interno sul campo (definito come o ) è una mappa:[1]
che associa ad ogni coppia di elementi e lo scalare .
Si tratta di una forma sesquilineare simmetrica definita positiva che soddisfa i seguenti assiomi per e :
- linearità su una componente:
- antilinearità sull'altra:
- simmetria coniugata:
- definita positiva:
In altre parole, per ogni fissato, le applicazioni
sono rispettivamente lineare e antilineare.
In fisica è convenzione parlare di forma hermitiana in presenza di un funzionale lineare nel secondo argomento e anti-lineare nel primo, cioè all'opposto della convenzione generalmente in uso tra i matematici. Questo perché in meccanica quantistica, nella notazione bra-ket (che porta grosse somiglianze con un prodotto scalare), per vari motivi è più comodo considerare i vettori nella seconda posizione ("ket") e i loro coniugati nella prima ("bra"). Presso alcuni autori si opera la distinzione che è inteso nel senso matematico e nel senso fisico.