Funzione calcolabile
Template:F Le funzioni calcolabili sono il principale oggetto di studio della teoria della calcolabilità. Le funzioni calcolabili sono l'analogo formale della nozione intuitiva di algoritmo, nel senso che una funzione è calcolabile se esiste un algoritmo che può svolgere il compito della funzione stessa, cioè se dato un input del dominio della funzione, questa è in grado di restituire il corrispondente output.
Secondo la (non ancora dimostrata) tesi di Church-Turing, le funzioni calcolabili corrispondono alle funzioni ricorsive, e quindi a tutti i modelli di calcolo equivalenti.
Proprietà
Una funzione calcolabile è in generale una funzione parziale
Secondo la (non ancora dimostrata) tesi di Church-Turing, la classe delle funzioni calcolabili è equivalente alla classe delle funzioni definite da
- le funzioni ricorsive
- il lambda calcolo di Church
- gli algoritmi normali di Markov
Alternativamente esse possono essere definite come gli algoritmi calcolabili da