Formula di Abel-Plana
In matematica, la formula di Abel-Plana è un tipo di sommatoria scoperta per vie indipendenti da Niels Henrik Abel nel 1823, e da Giovanni Antonio Amedeo Plana nel 1820. La formula è la seguente:
Essa vale per una funzione f che è olomorfa nella regione Re(z) ≥ 0, e che soddisfa una opportuna condizione di crescita nella stessa regione; ad esempio, è sufficiente assumere che |f(z)| è limitata da C/|z|1+ε in questa regione per alcune costanti C, ε > 0, sebbene la formula continui a valere anche con limiti molto meno ristretti[1].
Un esempio è fornito dalla Funzione zeta di Hurwitz:
- ,
valida per . Per , otteniamo la funzione zeta di Riemann, che possiamo scrivere nel modo seguente:
valida anch'essa .
Abel elaborò questa variante per somme alternate:
Una somma alternata converge se e solo se converge la sequenza di somme parziali interna associata.
Note
- ↑ Olver,Asymptotics and special functions, 1997, p.290
- Template:Cita pubblicazione
- Template:Cita pubblicazione
- Template:Cita pubblicazione
- Template:Cita pubblicazione