Deviazione mediana assoluta

Da testwiki.
Vai alla navigazione Vai alla ricerca

In statistica, la deviazione mediana assoluta misura la dispersione statistica di un campione.

Per un insieme X1X2, ..., Xn, il valore di MAD è definito come la mediana del valore assoluto delle deviazioni dei dati dalla mediana, ovvero:

MAD=median( |Ximedian(X)| )

Esempio

  • Si consideri un insieme (1, 1, 2, 2, 4, 6, 9), che ha un valore mediano di 2.
  • Il valore assoluto dei dati a cui sottraiamo il valore mediano è pari a (1, 1, 0, 0, 2, 4, 7), che ha un valore mediano pari a 1
    • basti considerare il riordinamento dei dati: (0, 0, 1, 1, 2, 4, 7).
    • Il MAD è quindi pari a 1

Usi

La deviazione mediana assoluta è una misura di dispersione. È uno stimatore più robusto della semplice varianza o deviazione standard. Si comporta meglio con distribuzioni senza valor medio o varianza, come la distribuzione di Cauchy. Ad esempio la distribuzione standard di Cauchy ha un valore indefinito di varianza, ma un valore di MAD pari a 1.

Ad esempio il MAD presenta una minore sensibilità agli outliers rispetto alla deviazione standard.

Relazione con la deviazione standard

Si può dimostrare che, nel caso di una distribuzione normale dei dati, i due valori sono correlati da un certo numero:

MADσ0.6745

ovvero:

σ1.4826 MAD.

Storia

La prima menzione nota del concetto di MAD si ha nel 1816, in un articolo scientifico di Carl Friedrich Gauss sulla determinazione dell'accuratezza delle osservazioni numeriche.[1][2]

Note

Bibliografia

Voci correlate

Template:Portale