Circolazione (fluidodinamica)

Da testwiki.
Vai alla navigazione Vai alla ricerca
Schema delle grandezze usate.

Nella fluidodinamica è detta circolazione il valore, solitamente indicato con Γ, della circuitazione di un campo di velocità lungo un percorso chiuso, ovvero la circuitazione della velocità:

Γ=Sdr¯dtdr¯

avendo indicato il percorso chiuso con S in quanto sempre concepibile come frontiera di una superficie orientata. La circuitazione, ovvero l'integrale del prodotto scalare della velocità con l'ascissa curvilinea, equivale alla proiezione della velocità, punto per punto, sulla curva.

Per un flusso irrotazionale la circolazione è nulla. Altrimenti, se il percorso racchiude al suo interno un vortice, la circolazione rappresenta l'intensità del vortice.[1]

La circolazione può essere espressa, grazie al teorema del rotore, anche in funzione della vorticità ω:

Γ=Sdr¯dtdr¯=S×dr¯dtdr¯2=Sω¯dr¯2

La circolazione fu usata per la prima volta, indipendentemente, da Frederick Lanchester, Martin Wilhelm Kutta, e Nikolaj Egorovič Žukovskij.[2]

Il teorema di Kutta-Joukowski (o Kutta-Žukovskij)

Template:Vedi anche

Discontinuità del vortice libero

Template:Vedi anche La soluzione particolare di vortice libero nelle equazioni a flusso potenziale incomprimibile in un sistema di coordinate polari, prevede che la componente di velocità radiale sia nulla, mentre la velocità tangenziale risulta dalla soluzione dell'equazione di Laplace:

dr¯dt=1rϕϑn¯θ=crn¯θ.

Per le ipotesi della teoria del flusso potenziale, il flusso deve essere irrotazionale, ovvero possedere una circolazione nulla. Ma osserviamo che, se S è una curva che contiene al suo interno l'origine (il centro del vortice), la quale è un punto di discontinuità in quanto:

r0dr¯dt,

allora la circolazione sarà:

Γ=Sdr¯dtdr¯=02π(dr¯dt)ϑrdϑ=02πcdϑ=2πc

un valore diverso da zero. La circolazione rappresenta l'intensità del vortice e fornisce il valore della costante di integrazione c. La circolazione, ricordando la definizione di funzione di corrente, pertanto sarà rispetto alla soluzione:

Γ=2πϕϑΓ=2πψlnr

Note

  1. Barnes W. McCormick, Aerodynamics of V/STOL Flight, Dover Publications, ISBN 0486404609.
  2. John D. Anderson, Jr., Fundamentals of Aerodynamics, The McGraw-Hill Companies, 2001, ISBN 9780072950465.

Voci correlate

Altri progetti

Template:Interprogetto

Template:Portale