Derivata materiale

Da testwiki.
Versione del 20 feb 2025 alle 01:29 di 2001:b07:646d:853d:c058:2f5c:156b:bed6 (discussione) (Definizione)
(diff) ← Versione meno recente | Versione attuale (diff) | Versione più recente → (diff)
Vai alla navigazione Vai alla ricerca

La derivata materiale, anche detta derivata sostanziale, derivata lagrangiana o derivata convettiva, è un operatore differenziale ottenuto attraverso l'applicazione di un opportuno cambio di coordinate alla derivata totale.

Nell'ambito della meccanica del continuo, viene usata per descrivere il tasso di variazione di una qualche quantità fisica associata ad un elemento di materia soggetto ad un campo vettoriale dipendente da spazio e tempo. La derivata materiale può essere vista come un collegamento tra la descrizioni euleriana e lagrangiana di una deformazione continua, e viene spesso utilizzata nello studio dei fenomeni di trasporto.

Definizione

Dato un campo vettoriale 𝐮(𝐫,t), la derivata materiale rispetto al tempo di un campo scalare φ(𝐫,t) è definita come:

DDtφ=tφ+𝐮φ

dove la derivata parziale temporale φ/t, che rappresenta la derivata del campo rispetto al tempo in una posizione fissata, è detta derivata euleriana, 𝐮φ è la derivata direzionale lungo il flusso detto anche termine di avvezione e φ è il gradiente di φ. Un esempio di questo tipo si ha scegliendo come campo vettoriale la velocità di deriva delle particelle di un fluido e come quantità fisica considerata la sua densità.

La derivata materiale di un campo vettoriale 𝐚(𝐫,t) è data da:

DDt𝐚=t𝐚+(𝐮)𝐚

dove 𝐚 è la derivata covariante di 𝐚.

Legame con la derivata totale

Template:Vedi anche La definizione di derivata totale rispetto al tempo di una funzione scalare φ(𝐫,t) è espressa attraverso la regola della catena:

ddtφ=tφ+φd𝐫dt

Preso un determinato cammino 𝐫(t) che descrive il moto di un oggetto nello spazio, il vettore:

d𝐫(t)dt=(d𝐱(t)dt,d𝐲(t)dt,d𝐳(t)dt)

ne descrive la velocità. Scegliendo un opportuno sistema di coordinate è possibile far coincidere il suddetto vettore velocità con la velocità di deriva del fluido, ottenendo la derivata materiale a partire dalla derivata totale. Se inoltre d𝐫(t)/dt=0, cioè la posizione è costante, la derivata totale temporale diventa pari alla derivata euleriana, ovvero la derivata parziale rispetto al tempo della posizione 𝐫, che risulta stazionaria.

Coordinate ortogonali

In un sistema di coordinate ortogonali, la componente j-esima del termine di avvezione è data da:[1]

[𝐯𝐮]j=ivihiujqi+uihihj(vjhjqivihiqj)

in cui:

hi=gij

con gij il tensore metrico.

Generalizzazione

Derivata corotazionale

È possibile generalizzare la derivata sostanziale introducendo per ciascuna particella di fluido un sistema ortogonale di coordinate corotazionali, il quale, mentre si muove insieme alla particella di fluido nello spazio, ruota con velocità angolare istantanea locale ω.

Detto 𝐯 il tensore gradiente delle velocità, la sua parte antisimmetrica:

𝐖ij=12(𝐯(𝐯)T)=12Ωij

è il tensore di velocità di rotazione, dove Ωij è il tensore di vorticità. Pertanto, per un tensore del secondo ordine 𝐚ij(𝐫,t), si ha che la derivata corotazionale è definita come:

𝒟𝒟t𝐚ij=DDt𝐚ij+(𝐖ij𝐚ij𝐚ij𝐖ij)=t𝐚ij+𝐮𝐚ij+12(Ωij𝐚ij𝐚ijΩij)

Note

Bibliografia

Voci correlate

Collegamenti esterni

Template:Portale