Miscela gassosa

Da testwiki.
Versione del 21 dic 2020 alle 22:33 di imported>EnzoBot (Collegamenti esterni: |date ----> |data)
(diff) ← Versione meno recente | Versione attuale (diff) | Versione più recente → (diff)
Vai alla navigazione Vai alla ricerca

Una miscela gassosa è una miscela di due o più gas.

Miscele reali e miscele ideali

Una miscela gassosa è detta reale quando gli effetti di miscelamento sono non nulli, ovvero quando il volume della miscela gassosa è diverso dalla somma dei volumi che avrebbero i singoli gas se non fossero miscelati, considerati alla pressione pari alla loro pressione parziale nella miscela. Nel caso contrario la miscela è detta ideale (secondo Lewis e Randall).[1]

Comportamento pVT delle miscele gassose reali

Nella letteratura scientifica non si trovano molti dati riguardo al comportamento pVT delle miscele gassose, essendo possibile incontrare un'infinità di miscele gassose per dati componenti. Sono presenti in letteratura solo alcuni casi particolari in cui le concentrazioni dei componenti in miscela sono fissate, ad esempio l'aria.[2]

Si ricorre quindi ai seguenti metodi per studiare il comportamento pVT di una miscela gassosa reale:

  • approssimazione di Dalton
  • approssimazione di Amagat
  • regole di miscela
  • metodo delle costanti pseudocritiche.

Approssimazione di Dalton

Nell'approssimazione di Dalton, basata sulla legge delle pressioni parziali, il fattore di comprimibilità Z viene ricavato dall'espressione seguente:

Z=i=1nyiZi|T,v

in cui si assume che il componente i-esimo occupa l'intero volume della miscela a temperatura T.

Approssimazione di Amagat

Nell'approssimazione di Amagat, basata sulla legge di Amagat, il fattore di comprimibilità Z viene ricavato dall'espressione seguente:

Z=i=1nyiZi|p,T

in cui si assume che il componente i-esimo esiste alla pressione p e temperatura T della miscela.

Regole di miscela

Nel caso di miscele binarie[3], le regole di miscela (in inglese "mixing rules" o "combination rules") stabiliscono un legame tra i coefficienti ai e bi utilizzati nelle equazioni di stato cubiche, relativi al componente i-esimo e i cosiddetti "cross-coefficients" aij e bij, relativi alla miscela binaria dei due componenti i e j.

Il coefficiente a è correlato alla pressione di coesione, mentre il coefficiente b è il covolume. Questi coefficienti descrivono lo scostamento della miscela dalle condizioni di idealità.

Il coefficiente b può essere determinato come:

b=i=1nyibi

in cui n è il numero di componenti della miscela gassosa e yi è la frazione molare del componente i-esimo.

Il coefficiente a può essere ricavato in vari modi. Uno di questi e la cosiddetta "correzione di Zudkevich e Joffe":

a=yiyjaij=yiyj(aiaj)0,5(1kij)

in cui la costante kij è tabellata, ed è nulla per miscele ideali o se uno dei componenti è l'idrogeno.

Metodo delle costanti pseudocritiche

Il metodo delle costanti pseudocritiche consiste nel descrivere il comportamento pVT di una miscela come se questa fosse un gas con costanti critiche pc (pressione critica) e Tc (temperatura critica), correlate alle costanti critiche dei singoli componenti. Nel caso delle miscele si parla di "costanti pseudocritiche", in quanto corrispondono ad un gas fittizio.

Esistono vari modi (o "regole") per determinare le costanti pseudocritiche, ad esempio la "regola di Kay", la "regola di Prausnitz & Gunn" e la "regola di Lorentz & Berthelot".

Regola di Kay

Diagramma generalizzato fattore di compressibilità.

La "regola di Kay" afferma che:

Tc=i=1nyiTc,i
pc=i=1nyipc,i
ωmix=yiωi

in cui ωi e ωmix rappresentano il fattore acentrico del componente i-esimo e della miscela gassosa.

A partire dalle costanti pseudocritiche così ricavate si possono quindi determinare i coefficienti a e b (da sostituire nelle equazioni cubiche) oppure il "fattore di comprimibilità della miscela", definito come:

Zmix=Z0+ωZ1

in cui Z0 e Z1 sono dei parametri che vengono determinati dal "diagramma generalizzato di Nelson-Obert" (o "diagramma generalizzato del fattore di compressibilità").[4] Quest'ultima espressione è chiamata correlazione di Lee-Kesler, ed è una conseguenza del teorema degli stati corrispondenti.

Regola di Lorentz & Berthelot

Secondo la "regola di Lorentz & Berthelot", le costanti pseudocritiche sono calcolate come:

Tc,ij=(Tc,iTc,j)0.5(1kij)
Pc,ij=RTc,ijZc,ijVc,ij

in cui kc,ij è un parametro di interazione binaria tabellato, mentre il fattore di compressibilità critico di miscela Zc,ij è calcolato come:

Zc,ij=Zc,i+Zc,j2

mentre il volume critico della miscela è pari a:

Vc,ij=(Vc,i1/3+Vc,j1/32)3

Una volta determinati Zc,ij e Vc,ij, si calcolano i valori delle costanti pseudocritiche, e quindi le costanti Bij0, Bij1 e ωij utilizzando le seguenti correlazioni analitiche:

Bij0=0,0830,422Tr,ij1,6
Bij1=0,1390,172Tr,ij4,2
ωij=ωi+ωj2

e quindi:

Bii(Pc,iRTc,i)=Bi0+ωiBi1
Bij(Pc,ijRTc,ij)=Bij0+ωijBij1

si ricava quindi il coefficiente viriale B:

B=yiyjBij

e si applica l'equazione viriale troncata (o "prima correlazione di Pitzer"):

Z=1+BPRT

Note

  1. Il concetto di "miscela reale" non va confuso con il concetto di miscela di gas reali.
  2. Infatti l'aria è una miscela gassosa ben determinata, per cui si ha un "rapporto molare omogeneo", ovvero le concentrazioni dei vari componenti (azoto e ossigeno principalmente) sono fissate.
  3. ovvero a due componenti.
  4. Si parla in questo caso di "correlazione grafica".

Bibliografia

Voci correlate

Collegamenti esterni

Template:Stati della materia Template:Controllo di autorità Template:Portale