File:Sine of distance from origin.png
Da testwiki.
Vai alla navigazione
Vai alla ricerca
Sine_of_distance_from_origin.png (800 × 589 pixel, dimensione del file: 144 KB, tipo MIME: image/png)
Questo file proviene da Wikimedia Commons e può essere utilizzato da altri progetti. Di seguito viene mostrata la descrizione presente nella pagina di descrizione del file.
| DescrizioneSine of distance from origin.png |
A 3D surface plot of the sine of distance from the origin:
|
|||
| Data | ||||
| Fonte |
Self-Made with Mathematica |
|||
| Autore | Inductiveload | |||
| Licenza (Riusare questo file) |
|
| Description | Sine of the distance from the origin |
|---|---|
| Equation | |
| Co-ordinate System | Cartesian |
| X Range | -2π .. 2π |
| Y Range | -2π .. 2π |
Mathematica Code
| Please be aware that at the time of uploading (21:24, 13 June 2007 (UTC)), this code may take a significant amount of time to execute on a consumer-level computer. |
| This uses Chris Hill's antialiasing code to average pixels and produce a less jagged image. The original code can be found here. |
\!\(gr = Plot3D[\[IndentingNewLine]Sin[Sqrt[x^2 +
y^2]], \[IndentingNewLine]{x, \(-2\)\ Pi, 2 Pi}, \[IndentingNewLine]{
y, \(-2\)\ Pi, 2
Pi}, \[IndentingNewLine]PlotPoints -> 600, \[IndentingNewLine]Mesh ->
False, \[IndentingNewLine]BoxRatios -> {4,
4, 1}, \[IndentingNewLine]Axes -> True, \[IndentingNewLine]Boxed \
-> True, \[IndentingNewLine]AxesLabel -> {"\<x\>", "\<y\>",
"\<u\>"}, \[IndentingNewLine]Ticks -> {\[IndentingNewLine]{\
\[IndentingNewLine]{\(-2\)
Pi, \(-2\) π, 0.01, {AbsoluteThickness[4]}}, \[IndentingNewLine]{\(-
Pi\), \(-π\), 0.01, {AbsoluteThickness[4]}}, \[IndentingNewLine]{0, 0,
0.01, {AbsoluteThickness[4]}}, \[IndentingNewLine]{Pi, π, 0.01, {
AbsoluteThickness[
4]}}, \[IndentingNewLine]{2
Pi, 2 π, 0.01, {AbsoluteThickness[4]}}\[IndentingNewLine]}, \
\[IndentingNewLine]{\[IndentingNewLine]{\(-2\)
Pi, \(-2\) π, 0.01, {AbsoluteThickness[
4]}}, \[IndentingNewLine]{\(-Pi\), \(-π\),
0.01, {AbsoluteThickness[
4]}}, \[IndentingNewLine]{0, 0, 0.01, {
AbsoluteThickness[4]}}, \[IndentingNewLine]{Pi, π, 0.01, \
{AbsoluteThickness[4]}}, \[IndentingNewLine]{2 Pi, 2 π, 0.01, {
AbsoluteThickness[
4]}}\[IndentingNewLine]}, \
\[IndentingNewLine]{\[IndentingNewLine]{\(-1\), \(-1\),
0.01, {AbsoluteThickness[4]}}, \[IndentingNewLine]{0, 0,
0.01, {AbsoluteThickness[
4]}}, \[IndentingNewLine]{1, 1, 0.01, {
AbsoluteThickness[4]}}\[IndentingNewLine]}\[IndentingNewLine]}, \
\[IndentingNewLine]TextStyle -> {FontSize ->
40}, \[IndentingNewLine]BoxStyle -> {AbsoluteThickness[4]}, \
\[IndentingNewLine]ImageSize -> 200, \[IndentingNewLine]]\[IndentingNewLine]\
\[IndentingNewLine]
aa[gr_] := Module[{siz, kersiz, ker, dat, as, ave, is,
ar}, \[IndentingNewLine]is = ImageSize /. Options[gr, \
ImageSize]; \[IndentingNewLine]ar = AspectRatio /. Options[gr,
AspectRatio]; \[IndentingNewLine]If[\(! NumberQ[is]\), is = 288]; \
\[IndentingNewLine]kersiz =
4; \[IndentingNewLine]img = \
ImportString[ExportString[gr, "\<PNG\>", ImageSize -> \((is\
kersiz)\)],
"\<PNG\>"]; \[IndentingNewLine]siz = Reverse@\(Dimensions[img[\([1,
1]\)]]\)[\([{1, 2}]\)]; \[IndentingNewLine]ker =
Table[N[1/
kersiz\^2], {kersiz}, {kersiz}]; \[IndentingNewLine]dat = N[img[\([
1, 1]\)]]; \[IndentingNewLine]as = Dimensions[
dat]; \[IndentingNewLine]ave =
Partition[Transpose[\(Flatten[ListConvolve[ker, dat[\([All,
All, #]\)]]] &\) /@ Range[as[\([3]\)]]], as[\([2]\)] - kersiz +
1]; \[IndentingNewLine]ave =
Take[ave,
Sequence @@ \((\({1, \(Dimensions[ave]\)[\([#]\)], kersiz} &\) /@
Range[Length[Dimensions[
ave]] - 1])\)]; \
\[IndentingNewLine]Show[Graphics[Raster[ave, {{0, 0}, siz/
kersiz}, {0, 255}, ColorFunction -> RGBColor]],
PlotRange -> {{0, siz[\([1]\)]/kersiz}, {0, siz[\([2]\)]/
kersiz}}, ImageSize -> is,
AspectRatio -> ar]\[IndentingNewLine]]\[IndentingNewLine]
finalgraphic = aa[gr]\)
Didascalie
Aggiungi una brevissima spiegazione di ciò che questo file rappresenta
Elementi ritratti in questo file
raffigura
Valore sconosciuto senza un elemento Wikidata
13 giu 2007
147 802 byte
589 pixel
800 pixel
image/png
9fe24561235d8bb98e3e9f4c229da596ce1c32c5
Cronologia del file
Fare clic su un gruppo data/ora per vedere il file come si presentava nel momento indicato.
| Data/Ora | Miniatura | Dimensioni | Utente | Commento | |
|---|---|---|---|---|---|
| attuale | 22:19, 13 giu 2007 | 800 × 589 (144 KB) | wikimediacommons>Inductiveload | {{Information |Description=A 3D surface plot of <math>u=\sin \left( \sqrt{x^2 + y^2} \right). This represents the displacement for a point source in 2D, with no attenuation due to distance. |Source=Self-Made with Mathematica {{Mathemetica}} |Date=13/06/2 |
Utilizzo del file
La seguente pagina usa questo file:
