File:Drum vibration mode22.gif

Da testwiki.
Vai alla navigazione Vai alla ricerca
Drum_vibration_mode22.gif (248 × 130 pixel, dimensione del file: 239 KB, tipo MIME: image/gif, ciclico, 19 frame, 1,9 s)

Questo file proviene da Wikimedia Commons e può essere utilizzato da altri progetti. Di seguito viene mostrata la descrizione presente nella pagina di descrizione del file.

Dettagli

Descrizione
English: Illustration of vibrations of a drum.
Data (UTC)
Fonte Opera propria
Autore Oleg Alexandrov
Altre versioni
GIF sviluppo
InfoField
 Questo diagramma in GIF grafica è stato creato con MATLAB.

Licenza

Public domain Io, detentore del copyright su quest'opera, la rilascio nel pubblico dominio. Questa norma si applica in tutto il mondo.
In alcuni paesi questo potrebbe non essere legalmente possibile. In tal caso:
Garantisco a chiunque il diritto di utilizzare quest'opera per qualsiasi scopo, senza alcuna condizione, a meno che tali condizioni siano richieste dalla legge.

Source code (MATLAB)

function main()

   k = 2; % k-th asimuthal number and bessel function
   p = 2; % p-th bessel root

 

   % Get a grid
   R1=linspace(0.0, 1.0, N); 
   Theta1=linspace(0.0, 2*pi, N);
   [R, Theta]=meshgrid(R1, Theta1);
   X=R.*cos(Theta);
   Y=R.*sin(Theta);

   T=linspace(0.0, 2*pi/q, N); T=T(1:(N-1));

   for iter=1:length(T);
      
      t = T(iter);
      Z=sin(q*t)*besselj(k, q*R).*cos(k*Theta);

      figure(1); clf; 
      surf(X, Y, Z);
      caxis([-1, 1]);
      shading faceted;
      colormap autumn;

      % viewing angle
      view(108, 42);
      
      axis([-1, 1, -1, 1, -1, 1]);
      axis off;

      H=text(0, -0.3, 1.4, sprintf('(%d, %d) mode', k, p), 'fontsize', 25);

      
      file=sprintf('Frame%d.png', 1000+iter);
      disp(sprintf('Saving to %s', file));
      print('-dpng',  '-zbuffer',  '-r100', file);

      pause(0.1);
   end

   % converted to gif with the command 
   % convert -antialias -loop 10000 -delay 10  -scale 50% Frame10* Drum_vibration_mode22.gif

function r = find_pth_bessel_root(k, p)

   % a dummy way of finding the root, just get a small interval where the root is
   
   X=0.5:0.5:(10*p+1); Y = besselj(k, X);
   [a, b] = find_nthroot(X, Y, p);

   X=a:0.01:b; Y = besselj(k, X);
   [a, b] = find_nthroot(X, Y, 1);

   X=a:0.0001:b; Y = besselj(k, X);
   [a, b] = find_nthroot(X, Y, 1);

   r=(a+b)/2;
   
function [a, b] = find_nthroot(X, Y, n)

   l=0;

   m=length(X);
   for i=1:(m-1)
      if ( Y(i) >= 0  & Y(i+1) <= 0 ) | ( Y(i) <= 0  & Y(i+1) >= 0 )
	 l=l+1;
      end

      if l==n
	 a=X(i); b=X(i+1);

	 %disp(sprintf('Error in finding the root %0.9g', b-a));
	 return;
      end
   end

   disp('Root not found!');

Didascalie

Aggiungi una brevissima spiegazione di ciò che questo file rappresenta

Elementi ritratti in questo file

raffigura

Cronologia del file

Fare clic su un gruppo data/ora per vedere il file come si presentava nel momento indicato.

Data/OraMiniaturaDimensioniUtenteCommento
attuale00:50, 5 nov 2023Miniatura della versione delle 00:50, 5 nov 2023248 × 130 (239 KB)wikimediacommons>ReneeWritesReverted to version as of 04:46, 16 January 2008 (UTC)

La seguente pagina usa questo file: