File originale(2 502 × 600 pixel, dimensione del file: 617 KB, tipo MIME: image/png)
Questo file proviene da Wikimedia Commons e può essere utilizzato da altri progetti.
Di seguito viene mostrata la descrizione presente nella pagina di descrizione del file.
Dettagli
DescrizioneDeepLearningReconstruction.png
English: Figure 8 from Andreas Maier, Christopher Syben. Tobias Lasser. Christian Riess. "A gentle introduction to deep learning in medical image processing". Zeitschrift für Medizinische Physik
Please reference this article, if you reuse this figure.
Original Caption: Results from a deep learning image-to-image reconstruction based on U-net. The reference image with a lesion embedded is shown on the left followed by the analytic reconstruction result that is used as input to U-net. U-net does an excellent job when trained and tested without noise. If unmatched noise is provided as input, an image is created that appears artifact-free, yet not just the lesion is gone, but also the chest surface is shifted by approximately 1 cm. On the right hand side, an undesirable result is shown that emerged at some point during training of several different versions of U-net which shows organ-shaped clouds in the air in the background of the image. Note that we omitted displaying multiple versions of “Limited Angle” as all three inputs to the U-Nets would appear identically given the display window of the figure of [−1000, 1000] HU.
di condividere – di copiare, distribuire e trasmettere quest'opera
di modificare – di adattare l'opera
Alle seguenti condizioni:
attribuzione – Devi fornire i crediti appropriati, un collegamento alla licenza e indicare se sono state apportate modifiche. Puoi farlo in qualsiasi modo ragionevole, ma non in alcun modo che suggerisca che il licenziante approvi te o il tuo uso.
https://creativecommons.org/licenses/by/4.0CC BY 4.0 Creative Commons Attribution 4.0 truetrue
Didascalie
Aggiungi una brevissima spiegazione di ciò che questo file rappresenta
Results from a deep learning image-to-image reconstruction based on U-net. The reference image with a lesion embedded is shown on the left followed by the analytic reconstruction result that is used as input to U-net.