Operatore completamente continuo
Template:S In matematica, un operatore completamente continuo è un operatore lineare limitato tra spazi di Banach che trasforma successioni debolmente convergenti in successioni convergenti in norma. In modo equivalente, una funzione che mappa tutti i sottospazi relativamente debolmente compatti di uno spazio di Banach in sottospazi relativamente compatti di uno spazio di Banach è completamente continua.
Dato uno spazio localmente convesso sui reali, una funzione continua definita su un insieme chiuso è completamente continua se esiste un insieme compatto tale per cui .
Tutti gli operatori compatti sono completamente continui, ma non è vero il viceversa.
Bibliografia
- Template:De D. Hilbert, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen , Chelsea, reprint (1953)
- Template:Fr F. Riesz, "Sur les opérations fonctionelles linéaires" C.R. Acad. Sci. Paris Sér. I Math. , 149 (1909) pp. 974–977
- Template:Fr S.S. Banach, Théorie des opérations linéaires , Hafner (1932)
- Template:En R. E. Megginson, An Introduction to Banach Space Theory , Springer (1998) pp. 336–339
- Template:En A. Pietsch, History of Banach Spaces and Linear Operators , Birkhauser (2007) pp. 49–50
Voci correlate
- Operatore compatto
- Operatore lineare continuo
- Sottospazio relativamente compatto
- Topologia operatoriale