Teorema di Taniyama-Shimura

Da testwiki.
Versione del 3 gen 2024 alle 07:57 di imported>Pasquale Rosati (growthexperiments-addlink-summary-summary:2|0|0)
(diff) ← Versione meno recente | Versione attuale (diff) | Versione più recente → (diff)
Vai alla navigazione Vai alla ricerca

Template:NN Template:S In matematica, il teorema di Taniyama-Shimura, meglio noto come teorema di modularità, afferma che ogni curva ellittica, definita sul campo dei numeri razionali, è modulare. In una formulazione equivalente, afferma che per ogni curva ellittica definita su esiste una forma modulare la cui L-serie coincide con la L-serie della curva ellittica considerata.

Questo teorema è stato enunciato in origine come congettura da Yutaka Taniyama nel settembre del 1955, riformulato con più rigore da Gorō Shimura nel 1957 e in seguito ripreso da André Weil che nel 1967 aprì la strada alla sua dimostrazione. Nel 1994 Andrew Wiles e Richard Taylor ne dimostrarono il caso particolare per le curve ellittiche semistabili, a costituire una parte significativa della dimostrazione dell'ultimo teorema di Fermat di Wiles. La dimostrazione del teorema di modularità fu completata nel 2001 da Christophe Breuil, Brian Conrad, Fred Diamond e dallo stesso Taylor che, partendo dal lavoro di Wiles, dimostrarono gli altri casi rimanenti.

Bibliografia

Voci correlate

Template:Portale